11月22日在以“跨越边界的科技伦理”为主题的第二届中国科技伦理高峰论坛上,中国科学院院士、北京大学教授梅宏,再度发声认为,当前AI面临此三大问题。
(1)泡沫太大,仍处于技术成熟度曲线(hype cycle)的高峰阶段,喧嚣埋没理性,需要一个冷静期;
(2)以偏概全,对成功个案不顾前提地放大、泛化,过度承诺;
(3)期望过高,用户神化AI的预期效果,提出难以实现的需求。
“智能是人类区别于其他动物的专有特征,特别是认知能力。我们可以接受机器在感知能力方面超越人类,但对机器认知智能的研发,需要高度审慎。从科技伦理的视角来看,我们为什么要造出一个替代我们认知的东西?”
11月22日,在以“跨越边界的科技伦理”为主题的第二届中国科技伦理高峰论坛上,中国科学院院士、北京大学教授梅宏直指当前数字技术面临的伦理挑战。
从智能制造到智慧城市,从医疗健康到金融服务,当前大语言模型火爆,人工智能(AI)风头正盛。梅宏认为,在AI热潮中,泡沫太大,仍处于技术成熟度曲线的高峰阶段,喧嚣埋没理性,需要一个冷静期。
他强调,虽然基于当前的技术路径,大模型尚不能“无中生有”,做出超越人类预期的事情,但一味信奉“蛮力”、追求规模,也极易发展出在覆盖面和复杂度上人们难以掌控的“巨兽”。
在经历了两个“春天”和两个“冬天”后,AI迎来了第三个“春天”,深度学习技术带来的一次次突破不断刷新着人们对AI的认知。
但是,从脸书公司(Facebook)数据泄露到大模型生成内容引发侵权纠纷和虚假信息传播,数字技术在为人类社会经济发展带来益处的同时,也带来了数据隐私保护、算法偏见、责任认定等一系列伦理问题。
例如,就当前大语言模型的技术路线而言,“黑盒”导致的不可解释性是其最大“罩门”。如果不加任何规制而大量应用,可能导致人类知识体系面临严峻挑战。训练语料的质量缺陷、概率统计的内生误差等因素会导致大模型产生幻觉,生成错误内容;再加上人为干预诱导,极易生成虚假内容。
“通过算法,平台可以个性化推送内容,但也可能形成用户的信息茧房。我最近最大的困扰就是拿着手机却读不到想读的有价值的内容。”梅宏表示,目前几乎大部分网络平台都在AI算法和大数据驱动下运营,这就带来对算法和数据应用的有效监管问题,这些亟待通过建立完善的治理体系加以解决。当涉及平台跨境时,还需要有相应的国际治理体系。
当前,社会对“AI+”或“AI for everything”(一切皆人工智能)抱有很高的期望,然而,现实情况却不尽如人意。
“雷声隆隆,雨点并不大。”梅宏坦言,“从当前的热潮中,我看到了太多‘炒作’和‘非理性’导致的 AI‘过热’现象,也对当前AI发展技术路径多样性的欠缺产生了一些担忧。”
“大语言模型的成功依赖于人类长时间积累的庞大语料库,文生视频的成功也依赖于互联网上存在的海量视频。然而,其他行业的数据积累尚未达到这个量级。获取全数据,关键是跨越足够的时间尺度。”梅宏表示,AI的应用还需要经历一段时期的探索、磨合和积累,才可能迎来繁荣。
“在我看来,AI当前的问题有3个:泡沫太大,仍处于技术成熟度曲线的高峰阶段,喧嚣埋没理性,需要一个冷静期;以偏概全,对成功个案不顾前提地放大、泛化,过度承诺;期望过高,用户神化AI的预期效果,提出难以实现的需求。”梅宏说。
面对AI技术发展及其应用的现状,梅宏建议,在尚搞不清如何应用、用到何处时,不妨先积累数据,“可采尽采、能存尽存”。那么,大语言模型能走向通用人工智能吗?梅宏认为,从基本原理来看,目前的大语言模型没有跳出概率统计这个框架。
梅宏并不认为现在的AI有所谓“意识”或者知识涌现能力。以大语言模型为例,模型本身无法产生新的东西,其生成的内容取决于对大量文本内容的统计,如果某些内容反复出现,它们大概率就会将之视为“合理存在”的内容。
“就这个意义而言,大模型可被视为是由已有语料压缩而成的知识库,生成结果的语义正确性高度依赖于数据的空间广度、时间深度以及分布密度,更高度依赖于数据的质量。”他提到,学术界的研究更应关心大模型构建过程的可重复性和可追溯性,尽可能保证结果的可解释和可信任。
“大胆预测,作为压缩了人类已有的可公开访问的绝大多数知识的基础模型,大语言模型将像互联网一样走向开源。全世界共同维护一个开放共享的基础模型,尽力保证其与人类知识同步。”梅宏说,“这至少也是表达自己的一种期望。”